Platonic and Archimedean geometries in multicomponent elastic membranes.

نویسندگان

  • Graziano Vernizzi
  • Rastko Sknepnek
  • Monica Olvera de la Cruz
چکیده

Large crystalline molecular shells, such as some viruses and fullerenes, buckle spontaneously into icosahedra. Meanwhile multicomponent microscopic shells buckle into various polyhedra, as observed in many organelles. Although elastic theory explains one-component icosahedral faceting, the possibility of buckling into other polyhedra has not been explored. We show here that irregular and regular polyhedra, including some Archimedean and Platonic polyhedra, arise spontaneously in elastic shells formed by more than one component. By formulating a generalized elastic model for inhomogeneous shells, we demonstrate that coassembled shells with two elastic components buckle into polyhedra such as dodecahedra, octahedra, tetrahedra, and hosohedra shells via a mechanism that explains many observations, predicts a new family of polyhedral shells, and provides the principles for designing microcontainers with specific shapes and symmetries for numerous applications in materials and life sciences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping

In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...

متن کامل

Edge Unfoldings of Platonic Solids Never Overlap

Is every edge unfolding of every Platonic solid overlapfree? The answer is yes. In other words, if we develop a Platonic solid by cutting along its edges, we always obtain a flat nonoverlapping simple polygon. We also give self-overlapping general unfoldings of Platonic solids other than the tetrahedron (i.e., a cube, an octahedron, a dodecahedron, and an icosahedron), and edge unfoldings of so...

متن کامل

Elastic platonic shells.

On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic s...

متن کامل

Dense packings of polyhedra: Platonic and Archimedean solids.

Understanding the nature of dense particle packings is a subject of intense research in the physical, mathematical, and biological sciences. The preponderance of previous work has focused on spherical particles and very little is known about dense polyhedral packings. We formulate the problem of generating dense packings of nonoverlapping, nontiling polyhedra within an adaptive fundamental cell...

متن کامل

Isoperimetric Quotient for Fullerenes and Other Polyhedral Cages

The notion of Isoperimetric Quotient (IQ) of a polyhedron has been already introduced by Polya. It is a measure that tells us how spherical is a given polyhedron. If we are given a polyhedral graph it can be drawn in a variety of ways in 3D space. As the coordinates of vertices belonging to the same face may not be co-planar the usual deenition of IQ fails. Therefore, a method based on a proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 11  شماره 

صفحات  -

تاریخ انتشار 2011